Hydrogen Sulfide Increases Nitric Oxide Production from Endothelial Cells by an Akt-Dependent Mechanism

نویسندگان

  • Benjamin L. Predmore
  • David Julian
  • Arturo J. Cardounel
چکیده

Hydrogen sulfide (H(2)S) and nitric oxide (NO) are both gasotransmitters that can elicit synergistic vasodilatory responses in the in the cardiovascular system, but the mechanisms behind this synergy are unclear. In the current study we investigated the molecular mechanisms through which H(2)S regulates endothelial NO production. Initial studies were performed to establish the temporal and dose-dependent effects of H(2)S on NO generation using EPR spin trapping techniques. H(2)S stimulated a twofold increase in NO production from endothelial nitric oxide synthase (eNOS), which was maximal 30 min after exposure to 25-150 μM H(2)S. Following 30 min H(2)S exposure, eNOS phosphorylation at Ser 1177 was significantly increased compared to control, consistent with eNOS activation. Pharmacological inhibition of Akt, the kinase responsible for Ser 1177 phosphorylation, attenuated the stimulatory effect of H(2)S on NO production. Taken together, these data demonstrate that H(2)S up-regulates NO production from eNOS through an Akt-dependent mechanism. These results implicate H(2)S in the regulation of NO production in endothelial cells, and suggest that deficiencies in H(2)S signaling can directly impact processes regulated by NO.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EXPRESSION OF INDUCIBLE NITRIC OXIDE SYNTHASE GENE (iNOS) STIMULATED BY HYDROGEN PEROXIDE IN HUMAN ENDOTHELIAL CELLS

Inducible nitric oxide synthase (iNOS) gene expresses a calcium calmudolin-independent enzyme which can catalyse NO production from L-arginine. The induction of iNOS activity has been demonstrated in a wide variety of cell types under stimulation with cytokines and lipopoly saccharide (LPS). Previous studies indicated that all nitric oxide synthases (NOS) activated in human umbilical vein endot...

متن کامل

Crosstalk between hydrogen sulfide and nitric oxide in endothelial cells

Hydrogen sulfide (H2 S) and nitric oxide (NO) are major gasotransmitters produced in endothelial cells (ECs), contributing to the regulation of vascular contractility and structural integrity. Their interaction at different levels would have a profound impact on angiogenesis. Here, we showed that H2 S and NO stimulated the formation of new microvessels. Incubation of human umbilical vein endoth...

متن کامل

Hydrogen Sulfide Increases Nitric Oxide Production and Subsequent S-Nitrosylation in Endothelial Cells

Hydrogen sulfide (H2S) and nitric oxide (NO), two endogenous gaseous molecules in endothelial cells, got increased attention with respect to their protective roles in the cardiovascular system. However, the details of the signaling pathways between H2S and NO in endothelia cells remain unclear. In this study, a treatment with NaHS profoundly increased the expression and the activity of endothel...

متن کامل

The novel proangiogenic effect of hydrogen sulfide is dependent on Akt phosphorylation.

OBJECTIVE Hydrogen sulfide (H(2)S) has been reported to be a gasotransmitter which regulates cardiovascular homeostasis. The present study aims to examine the hypothesis that hydrogen sulfide is able to promote angiogenesis. METHODS Angiogenesis was assessed using in vitro parameters (i.e. endothelial cell proliferation, adhesion, transwell migration assay, scratched wound healing and formati...

متن کامل

20-HETE-induced nitric oxide production in pulmonary artery endothelial cells is mediated by NADPH oxidase, H2O2, and PI3-kinase/Akt.

We have shown that 20-hydroxyeicosatetraenoic acid (20-HETE) increases both superoxide and nitric oxide (NO) production in bovine pulmonary artery endothelial cells (BPAECs). The current study was designed to determine mechanisms underlying 20-HETE-stimulated NO release, and particularly the role of NADPH oxidase, reactive oxygen species, and PI3-kinase in stimulated NO release. Intracellular h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2011